
pyVoIP
Release 1.6.8

Tayler J Porter

Jan 17, 2024

CONTENTS:

1 Examples 3
1.1 Setup . 3
1.2 Announcement Board . 3
1.3 IVR/Phone Menus . 5

2 Global Variables 7

3 VoIP - The Bridge Between SIP and RTP 9
3.1 Errors . 9
3.2 Enums . 9
3.3 Classes . 10

3.3.1 VoIPCall . 10
3.3.2 VoIPPhone . 11

4 SIP - Session Initiation Protocol 13
4.1 Errors . 13
4.2 Enums . 13
4.3 Classes . 14

4.3.1 SIPClient . 14
4.3.2 SIPMessage . 17

5 RTP - Real-time Transport Protocol 19
5.1 Errors . 19
5.2 Enums . 19
5.3 Classes . 21

5.3.1 RTPPacketManager . 21
5.3.2 RTPMessage . 21
5.3.3 RTPClient . 22

Index 25

i

ii

pyVoIP, Release 1.6.8

PyVoIP is a pure python VoIP/SIP/RTP library. Currently, it supports PCMA, PCMU, and telephone-event.

Please note this is is still in development and can only originate calls with PCMU. In future, it will be able to initiate
calls in PCMA as well.

This library does not depend on a sound library, i.e. you can use any sound library that can handle linear sound data
such as pyaudio or even wave. Keep in mind PCMU only supports 8000Hz, 1 channel, 8 bit audio.

In this documentation we will use the following terms:

client
For the purposes of this documentation, the term client will be defined as the person calling this library.

user
For the purposes of this documentation, the term user will be defined as the programmer, i.e. the ‘server-side’ if
using the Client-Server model.

CONTENTS: 1

https://en.wikipedia.org/wiki/Client%E2%80%93server_model

pyVoIP, Release 1.6.8

2 CONTENTS:

CHAPTER

ONE

EXAMPLES

Here we will go over a few basic phone setups.

1.1 Setup

PyVoIP uses callback functions to initiate phone calls. In the example below, our callback function is named answer.
The callback takes one argument, which is a VoIPCall instance.

We are also importing VoIPPhone and InvalidStateError. VoIPPhone is the main class for our softphone. An Invalid-
StateError is thrown when you try to perform an impossible command. For example, denying the call when the phone
is already answered, answering when it’s already answered, etc.

The following will create a phone that answers and automatically hangs up:

from pyVoIP.VoIP import VoIPPhone, InvalidStateError

def answer(call):
try:

call.answer()
call.hangup()

except InvalidStateError:
pass

if __name__ == "__main__":
phone = VoIPPhone(<SIP server IP>, <SIP server port>, <SIP server username>, <SIP␣

→˓server password>, myIP=<Your computer's local IP>, callCallback=answer)
phone.start()
input('Press enter to disable the phone')
phone.stop()

1.2 Announcement Board

Let’s say you want to make a phone that when you call it, it plays an announcement message, then hangs up. We can
accomplish this with the builtin libraries wave, audioop, time, and by importing CallState.

from pyVoIP.VoIP import VoIPPhone, InvalidStateError, CallState
import time
import wave

(continues on next page)

3

https://en.wikipedia.org/wiki/Softphone
https://docs.python.org/3/library/wave.html
https://docs.python.org/3/library/audioop.html
https://docs.python.org/3/library/time.html

pyVoIP, Release 1.6.8

(continued from previous page)

def answer(call):
try:

f = wave.open('announcment.wav', 'rb')
frames = f.getnframes()
data = f.readframes(frames)
f.close()

call.answer()
call.write_audio(data) # This writes the audio data to the transmit buffer,␣

→˓this must be bytes.

stop = time.time() + (frames / 8000) # frames/8000 is the length of the audio␣
→˓in seconds. 8000 is the hertz of PCMU.

while time.time() <= stop and call.state == CallState.ANSWERED:
time.sleep(0.1)

call.hangup()
except InvalidStateError:

pass
except:

call.hangup()

if __name__ == "__main__":
phone = VoIPPhone(<SIP Server IP>, <SIP Server Port>, <SIP Server Username>, <SIP␣

→˓Server Password>, myIP=<Your computers local IP>, callCallback=answer)
phone.start()
input('Press enter to disable the phone')
phone.stop()

Something important to note is our wait function. We are currently using:

stop = time.time() + (frames / 8000) # The number of frames/8000 is the length of the␣
→˓audio in seconds.

while time.time() <= stop and call.state == CallState.ANSWERED:
time.sleep(0.1)

This could be replaced with time.sleep(frames / 8000). However, doing so will not cause the thread to auto-
matically close if the user hangs up, or if VoIPPhone().stop() is called; using the while loop method will fix this
issue. The time.sleep(0.1) inside the while loop is also important. Supplementing time.sleep(0.1) for pass
will cause your CPU to ramp up while running the loop, making the RTP (audio being sent out and received) lag. This
can make the voice audibly slow or choppy.

Note: Audio must be 8 bit, 8000Hz, and Mono/1 channel. You can accomplish this in a free program called Audacity.
To make an audio recording Mono, go to Tracks > Mix > Mix Stereo Down to Mono. To make an audio recording 8000
Hz, go to Tracks > Resample. . . and select 8000, then ensure that your ‘Project Rate’ in the bottom left is also set to
8000. To make an audio recording 8 bit, go to File > Export > Export as WAV, then change ‘Save as type:’ to ‘Other
uncompressed files’, then set ‘Header:’ to ‘WAV (Microsoft)’, then set the ‘Encoding:’ to ‘Unsigned 8-bit PCM’

4 Chapter 1. Examples

https://www.audacityteam.org/

pyVoIP, Release 1.6.8

1.3 IVR/Phone Menus

We can use the following code to create IVR Menus. Currently, we cannot make ‘breaking’ IVR menus. Breaking IVR
menus in this context means, a user selecting an option mid-prompt will cancel the prompt, and start the next action.
Support for breaking IVR’s will be made in the future. For now, here is the code for a non-breaking IVR:

from pyVoIP.VoIP import VoIPPhone, InvalidStateError, CallState
import time
import wave

def answer(call):
try:

f = wave.open('prompt.wav', 'rb')
frames = f.getnframes()
data = f.readframes(frames)
f.close()

call.answer()
call.write_audio(data)

while call.state == CallState.ANSWERED:
dtmf = call.get_dtmf()
if dtmf == "1":

Do something
call.hangup()

elif dtmf == "2":
Do something else
call.hangup()

time.sleep(0.1)
except InvalidStateError:

pass
except:

call.hangup()

if __name__ == '__main__':
phone = VoIPPhone(<SIP Server IP>, <SIP Server Port>, <SIP Server Username>, <SIP␣

→˓Server Password>, myIP=<Your computers local IP>, callCallback=answer)
phone.start()
input('Press enter to disable the phone')
phone.stop()

Please note that get_dtmf() is actually get_dtmf(length=1), and as it is technically an io.StringBuffer(), it
will return "" instead of None. This may be important if you wanted an ‘if anything else, do that’ clause. Lastly,
VoIPCall stores all DTMF keys pressed since the call was established; meaning, users can press any key they want
before the prompt even finishes, or may press a wrong key before the prompt even starts.

1.3. IVR/Phone Menus 5

https://en.wikipedia.org/wiki/Interactive_voice_response

pyVoIP, Release 1.6.8

6 Chapter 1. Examples

CHAPTER

TWO

GLOBAL VARIABLES

There are a few global variables that may assist you if you’re having problems with the library.

pyVoIP.DEBUG = False
If set to true, pyVoIP will print debug messages that may be useful if you need to open a GitHub issue. Otherwise,
does nothing.

pyVoIP.TRANSMIT_DELAY_REDUCTION = 0.0
The higher this variable is, the more often RTP packets are sent. This should only ever need to be 0.0. However,
when testing on Windows, there has sometimes been jittering, setting this to 0.75 fixed this in testing, but you
may need to tinker with this number on a per-system basis.

7

pyVoIP, Release 1.6.8

8 Chapter 2. Global Variables

CHAPTER

THREE

VOIP - THE BRIDGE BETWEEN SIP AND RTP

The VoIP module coordinates between the SIP and RTP modules in order to create an effective Voice over Internet
Protocol system. The VoIP system is made for your convenience, and if you have a particularly intricate situation, you
can use the SIP and RTP modules independently and create your own version of the VoIP module. If you choose to use
the VoIP module, this section will explain how.

3.1 Errors

There are two errors under pyVoIP.VoIP.

exception VoIP.InvalidStateError
This is thrown by VoIPCall when you try to perform an action that cannot be performed during the current
CallState. For example denying a call that has already been answered, hanging up a call that hasn’t been answered
yet, or has already been ended.

exception VoIP.InvalidRangeError
This is thrown by VoIPPhone when you define the rtpPort ranges as rtpPortLow > rtpPortHigh. However, this is
not checked by VoIPCall, so if you are using your own class instead of VoIPPhone, make sure these ranges are
correct.

exception VoIP.NoPortsAvailableError
This is thrown when a call is attempting to be initiated but no ports are available.

3.2 Enums

VoIP.CallState
CallState is an Enum with four attributes.

CallState.DIALING
This CallState is used to describe when a user has originated a call to a client, but it has yet to be answered.

CallState.RINGING
This CallState is used to describe when a client is calling, but the call has yet to be answered.

In this state, you can use VoIPCall.answer() or VoIPCall.deny().

CallState.ANSWRED
This CallState is used to describe when a call has been answered and is active.

In this state, you can use VoIPCall.hangup().

CallState.ENDED
This CallState is used to describe when a call has been terminated.

9

pyVoIP, Release 1.6.8

In this state, you can not use any functions.

VoIP.PhoneStatus
PhoneStatus is an Enum with five attributes.

PhoneStatus.INACTIVE
This PhoneStatus is used when VoIPPhone.start() has not been called, or after the phone has fully
stopped after calling VoIPPhone.stop().

PhoneStatus.REGISTERING
This PhoneStatus is used when VoIPPhone.start() has been called, but has not finished starting.

PhoneStatus.REGISTERED
This PhoneStatus is used when VoIPPhone has finished starting successfully, and is ready for use.

PhoneStatus.DEREGISTERING
This PhoneStatus is used when VoIPPhone.stop() has been called, but has not finished stopping.

PhoneStatus.FAILED
This PhoneStatus is used when VoIPPhone.start() has been called, but failed to start due to an error.

3.3 Classes

3.3.1 VoIPCall

The VoIPCall class is used to represent a single VoIP Session, which may be to multiple clients.

class VoIP.VoIPCall(phone: VoIPPhone, request: SIPMessage, session_id: int, myIP: str, rtpPortLow: int,
rtpPortHigh: int)

The phone argument is the initating instance of VoIPPhone.

The callstate arguement is the initiating CallState.

The request argument is the SIPMessage representation of the SIP INVITE request from the VoIP
server.

The session_id argument is a unique code used to identify the session with SDP when answering the
call.

The myIP argument is the IP address it will pass to RTPClient’s to bind to.

The ms arguement is a dictionary with int as the key and a PayloadType as the value. This is only
used when originating the call.

dtmfCallback(code: str) -> None
Deprecated. Please use dtmf_callback instead.

dtmf_callback(code: str) -> None
This method is called by RTPClient’s when a telephone-event DTMF message is received. The code argu-
ment is a string. It should be an Event in complinace with RFC 4733 Section 3.2.

getDTMF(length=1) -> str
Deprecated. Please use get_dtmf instead.

get_dtmf(length=1) -> str
This method can be called get the next pressed DTMF key. DTMF’s are stored in an io.StringIO and act
as a stack. Meaning if the client presses the numbers 1-9-5 you’ll have the following output:

10 Chapter 3. VoIP - The Bridge Between SIP and RTP

https://tools.ietf.org/html/rfc4566#section-5.2
https://tools.ietf.org/html/rfc4733#section-3.2

pyVoIP, Release 1.6.8

VoIPCall.get_dtmf()
>>> '1'
VoIPCall.get_dtmf(length=2)
>>> '95'
VoIPCall.get_dtmf()
>>> ''

As you can see, calling this method when there a key has not been pressed returns an empty string.

answer() -> None
Answers the call if the phone’s state is CallState.RINGING.

answered(request: SIPMessage) -> None
This function is called by SIPClient when a call originated by the user has been answered by the client.

deny() -> None
Denies the call if the phone’s state is CallState.RINGING.

hangup() -> None
Ends the call if the phone’s state is CallState.ANSWRED.

bye() -> None
Ends the call but does not send a SIP BYE message to the SIP server. This function is used to end the call
on the server side when the client ended the call. THE USER SHOUND NOT CALL THIS FUNCTION
OR THE CLIENT WILL BE LEFT ON THE LINE WITH NO RESPONSE. CALL HANGUP()
INSTEAD.

writeAudio(data: bytes) -> None
Deprecated. Please use write_audio instead.

write_audio(data: bytes) -> None
Writes linear/raw audio data to the transmit buffer before being encoded and sent. The data argument
MUST be bytes. This audio must be linear/not encoded, RTPClient will encode it before transmitting.

readAudio(length=160, blocking=True) -> bytes
Deprecated. Please use read_audio instead.

read_audio(length=160, blocking=True) -> bytes
Reads linear/raw audio data from the received buffer. Returns length amount of bytes. Default length is
160 as that is the amount of bytes sent per PCMU/PCMA packet. When blocking is set to true, this function
will not return until data is available. When blocking is set to false and data is not available, this function
will return b"\x80" * length.

3.3.2 VoIPPhone

The VoIPPhone class is used to manage the SIPClient class and create VoIPCall’s when there is an incoming call. It
then passes the VoIPCall as the argument in the callback.

class VoIP.VoIPPhone(server: str, port: int, username: str, password: str, callCallback: Optional[Callable] =
None, myIP: Optional[str] = None, sipPort=5060, rtpPortLow=10000, rtpPortHigh=20000)

The server argument is your PBX/VoIP server’s IP, represented as a string.

The port argument is your PBX/VoIP server’s port, represented as an integer.

The username argument is your SIP account username on the PBX/VoIP server, represented as a
string.

The password argument is your SIP account password on the PBX/VoIP server, represented as a string.

3.3. Classes 11

pyVoIP, Release 1.6.8

The callCallback argument is your callback function that VoIPPhone will run when you receive a call.
The callback must take one argument, which will be a VoIPCall. If left as None, the VoIPPhone will
automatically respond to all incoming calls as Busy.

The myIP argument is used to bind SIP and RTP ports to receive incoming calls. If left as None, the
VoIPPhone will bind to 0.0.0.0.

The sipPort argument is the port SIP will bind to to receive SIP requests. The default for this protocol
is port 5060, but any port can be used.

The rtpPortLow and rtpPortHigh arguments are used to generate random ports to use for audio trans-
fer. Per RFC 4566 Sections 5.7 and 5.14, it can take multiple ports to fully communicate with other
clients, as such a large range is recommended. If an invalid range is given, a InvalidStateError will
be thrown.

callback(request: SIPMessage) -> None
This method is called by the SIPClient when an INVITE or BYE request is received. This function then
creates a VoIPCall or terminates it respectively. When a VoIPCall is created, it will then pass it to the
callCallback function as an argument. If callCallback is set to None, this function replies as BUSY. This
function should not be called by the user.

getStatus() -> PhoneStatus
Deprecated. Please use get_status instead.

get_status() -> PhoneStatus
This method returns the PhoneStatus.

request_port(blocking=True) -> int
This method is called when a new port is needed to use in a VoIPCall. If blocking is set to True, this will
wait until a port is available. Otherwise, it will raise NoPortsAvailableError.

release_ports(call: Optional[VoIPCall] = None) -> None
This method is called when a call ends. If call is provided, it will only release the ports used by that
VoIPCall. Otherwise, it will iterate through all active calls, and release all ports that are no longer in use.

start() -> None
This method starts the SIPClient class. On failure, this will automatically call stop().

stop() -> None
This method ends all currently ongoing calls, then stops the SIPClient class

call(number: str) -> VoIPCall
Originates a call using PCMU and telephone-event. The number argument must be a string, and it re-
turns a VoIPCall class in CallState.DIALING. You should use a while loop to wait until the CallState is
ANSWRED.

12 Chapter 3. VoIP - The Bridge Between SIP and RTP

https://tools.ietf.org/html/rfc4566#section-5.7
https://tools.ietf.org/html/rfc4566#section-5.14

CHAPTER

FOUR

SIP - SESSION INITIATION PROTOCOL

The SIP module receives, parses, and responds to incoming SIP requests/messages. If appropriate, it then forwards
them to the callback method of VoIPPhone.

4.1 Errors

There are two errors under pyVoIP.SIP.

exception SIP.InvalidAccountInfoError
This is thrown when SIPClient gets a bad response when trying to register with the PBX/VoIP server. This error
also kills the SIP REGISTER thread, so you will need to call SIPClient.stop() then SIPClient.start().

exception SIP.SIPParseError
This is thrown when SIPMessage is unable to parse a SIP message/request.

4.2 Enums

SIP.SIPMessageType
SIPMessageType is an IntEnum with two attributes. It’s stored in SIPMessage.type to effectively parse the
message.

SIPMessageType.MESSAGE
This SIPMessageType is used to signify the message was a SIP request.

SIPMessageType.RESPONSE
This SIPMessageType is used to signify the message was a SIP response.

SIP.SIPStatus
SIPStatus is used for SIPMessage’s with SIPMessageType.RESPONSE. They will not all be listed here, but a
complete list can be found on Wikipedia. SIPStatus has the following attributes:

status.value
This is the integer value of the status. For example, SIPStatus.OK.value is equal to int(200).

status.phrase
This is the string value of the status, usually written next to the number in a SIP response. For
example, SIPStatus.TRYING.phrase is equal to 'Trying'.

status.description
This is the string value of the description of the status, it can be useful for debugging. For
example, SIPStatus.OK.description is equal to 'Request successful'Not all responses
have a description.

13

https://en.wikipedia.org/wiki/List_of_SIP_response_codes

pyVoIP, Release 1.6.8

Here are a few common SIPStatus’ and their attributes in the order of value, phrase, description:

SIPStatus.TRYING
100, ‘Trying’, ‘Extended search being performed, may take a significant time’

SIPStatus.RINGING
180, ‘Ringing’, ‘Destination user agent received INVITE, and is alerting user of call’

SIPStatus.OK
200, ‘OK’, ‘Request successful’

SIPStatus.BUSY_HERE
486, ‘Busy Here’, ‘Callee is busy’

4.3 Classes

4.3.1 SIPClient

The SIPClient class is used to communicate with the PBX/VoIP server. It is responsible for registering with the server,
and receiving phone calls.

class SIP.SIPClient(server: str, port: int, username: str, password: str, myIP=”0.0.0.0”, myPort=5060,
callCallback: Optional[Callable[[SIPMessage], None]] = None)

The server argument is your PBX/VoIP server’s IP.

The port argument is your PBX/VoIP server’s port.

The username argument is your SIP account username on the PBX/VoIP server.

The password argument is your SIP account password on the PBX/VoIP server.

The myIP argument is used to bind a socket and receive incoming SIP requests and responses.

The myPort argument is the port SIPClient will bind to, to receive incoming SIP requests and re-
sponses. The default for this protocol is port 5060, but any port can be used.

The callCallback argument is the callback function for VoIPPhone. VoIPPhone will process the SIP
request, and perform the appropriate actions.

recv() -> None
This method is called by SIPClient.start() and is responsible for receiving and parsing through SIP requests.
This should not be called by the user.

parseMessage(message: SIPMessage) -> None
Deprecated. Please use parse_message instead.

parse_message(message: SIPMessage) -> None
This method is called by SIPClient.recv() and is responsible for parsing through SIP responses. This should
not be called by the user.

start() -> None
This method is called by VoIPPhone.start(). It starts the REGISTER and recv() threads. It is also what
initiates the bound port. This should not be called by the user.

stop() -> None
This method is called by VoIPPhone.stop(). It stops the REGISTER and recv() threads. It will also close
the bound port. This should not be called by the user.

genCallID() -> str
Deprecated. This should not be called by the user.

14 Chapter 4. SIP - Session Initiation Protocol

pyVoIP, Release 1.6.8

gen_call_id() -> str
This method is called by other ‘gen’ methods when a new Call-ID header is needed. See RFC 3261 Section
20.8. This should not be called by the user.

lastCallID() -> str
Deprecated. This should not be called by the user.

last_call_id() -> str
This method is called by other ‘gen’ methods when the last Call-ID header is needed. See RFC 3261 Section
20.8. This should not be called by the user.

genTag() -> str
Deprecated. This should not be called by the user.

gen_tag() -> str
This method is called by other ‘gen’ methods when a new tag is needed. See RFC 3261 Section 8.2.6.2.
This should not be called by the user.

genSIPVersionNotSupported() -> str
Deprecated. This should not be called by the user.

gen_sip_version_not_supported() -> str
This method is called by the recv() thread when it has received a SIP message that is not SIP version 2.0.

genAuthorization(request: SIPMessage) -> bytes
Deprecated. This should not be called by the user.

gen_authorization(request: SIPMessage) -> bytes
This calculates the authroization hash in response to the WWW-Authenticate header. See RFC 3261 Section
20.7. The request argument should be a 401 Unauthorized response. This should not be called by the
user.

genRegister(request: SIPMessage, deregister: bool = False) -> str
Deprecated. This should not be called by the user.

gen_register(request: SIPMessage, deregister: bool = False) -> str
This method generates a SIP REGISTER request. The request argument should be a 401 Unauthorized
response. If deregister is set to true, a SIP DE-REGISTER request is generated instead. This should not
be called by the user.

genBusy(request: SIPMessage) -> str
Deprecated. This should not be called by the user.

gen_busy(request: SIPMessage) -> str
This method generates a SIP 486 ‘Busy Here’ response. The request argument should be a SIP INVITE
request.

genOk(request: SIPMessage) -> str
Deprecated. This should not be called by the user.

gen_ok(request: SIPMessage) -> str
This method generates a SIP 200 ‘Ok’ response. The request argument should be a SIP BYE request.

genInvite(number: str, sess_id: str, ms: dict[int, dict[str, RTP.PayloadType]], sendtype:
RTP.RTP.TransmitType, branch: str, call_id: str) -> str

Deprecated. This should not be called by the user.

gen_invite(number: str, sess_id: str, ms: dict[int, dict[str, RTP.PayloadType]], sendtype:
RTP.RTP.TransmitType, branch: str, call_id: str) -> str

This method generates a SIP INVITE request. This is called by SIPClient.invite().

The number argument must be the number being called as a string.

4.3. Classes 15

https://tools.ietf.org/html/rfc3261#section-20.8
https://tools.ietf.org/html/rfc3261#section-20.8
https://tools.ietf.org/html/rfc3261#section-20.8
https://tools.ietf.org/html/rfc3261#section-20.8
https://tools.ietf.org/html/rfc3261#section-8.2.6.2
https://tools.ietf.org/html/rfc3261#section-20.7
https://tools.ietf.org/html/rfc3261#section-20.7

pyVoIP, Release 1.6.8

The sess_id argument must be a unique number.

The ms argument is a dictionary of the media types to be used. Currently only PCMU and telephone-event
is supported.

The sendtype argument must be an instance of RTP.TransmitType.

The branch argument must be a unique string starting with “z9hG4bK”. See RFC 3261 Section 8.1.1.7.

The call_id argument must be a unique string. See RFC 3261 Section 8.1.1.4.

genRinging(request: SIPMessage) -> str
Deprecated. This should not be called by the user.

gen_ringing(request: SIPMessage) -> str
This method generates a SIP 180 ‘Ringing’ response. The request argument should be a SIP INVITE
request.

genAnswer(request: SIPMessage, sess_id: str, ms: list[dict[str, Any]], sendtype: RTP.RTP.TransmitType)
Deprecated. This should not be called by the user.

gen_answer(request: SIPMessage, sess_id: str, ms: list[dict[str, Any]], sendtype: RTP.RTP.TransmitType)
This method generates a SIP 200 ‘OK’ response. Which, when in reply to an INVITE request, tells the
server the user has answered. This should not be called by the user.

The request argument should be a SIP INVITE request.

The sess_id argument should be a string casted integer. This will be used for the SDP o tag. See RFC 4566
Section 5.2. The sess_id argument will also server as the <sess-version> argument in the SDP o tag.

The ms argument should be a list of parsed SDP m tags, found in the SIPMessage.body attribute. This is
used to generate the response SDP m tags. See RFC 4566 Section 5.14.

The sendtype argument should be a RTP.TransmitType enum. This will be used to generate the SDP a tag.
See RFC 4567 Section 6.

genBye(request: SIPMessage) -> str
Deprecated. This should not be called by the user.

gen_bye(request: SIPMessage) -> str
This method generates a SIP BYE request. This is used to end a call. The request argument should be a
SIP INVITE request. This should not be called by the user.

genAck(request: SIPMessage) -> str
Deprecated. This should not be called by the user.

gen_ack(request: SIPMessage) -> str
This method generates a SIP ACK response. The request argument should be a SIP 401 response.

invite(number: str, ms: dict[int, dict[str, RTP.PayloadType]], sendtype: RTP.RTP.TransmitType)
This method generates a SIP INVITE request. This method is called by VoIPPhone.call().

The number argument must be the number being called as a string.

The ms argument is a dictionary of the media types to be used. Currently only PCMU and telephone-event
is supported.

The sendtype argument must be an instance of RTP.TransmitType.

bye(request: SIPMessage) -> None
This method is called by VoIPCall.hangup(). It calls genBye(), and then transmits the generated request.
This should not be called by the user.

deregister() -> bool
This method is called by SIPClient.stop() after the REGISTER thread is stopped. It will generate and

16 Chapter 4. SIP - Session Initiation Protocol

https://tools.ietf.org/html/rfc3261#section-8.1.1.7
https://tools.ietf.org/html/rfc3261#section-8.1.1.4
https://tools.ietf.org/html/rfc4566#section-5.2
https://tools.ietf.org/html/rfc4566#section-5.2
https://tools.ietf.org/html/rfc4566#section-5.14
https://tools.ietf.org/html/rfc4567#section-6

pyVoIP, Release 1.6.8

transmit a REGISTER request with an Expiration of zero. Telling the PBX/VoIP server it is turning off.
This should not be called by the user.

register() -> bool
This method is called by the REGISTER thread. It will generate and transmit a REGISTER request telling
the PBX/VoIP server that it will be online for at least 300 seconds. The REGISTER thread will call this
function every 295 seconds. This should not be called by the user.

4.3.2 SIPMessage

The SIPMessage class is used to parse SIP requests and responses and makes them easily processed by other classes.

class SIP.SIPMessage(data: bytes)

The data argument is the SIP message in bytes. It is then passed to SIPMessage.parse().

SIPMessage has the following attributes:

SIPMessage.heading
This attribute is the first line of the SIP message as a string. It contains the SIP Version, and the
method/response code.

SIPMessage.type
This attribute will be a SIPMessageType.

SIPMessage.status
This attribute will be a SIPStatus. It will be set to int(0) if the message is a request.

SIPMessage.method
This attribute will be a string representation of the method. It will be set to None if the message
is a response.

SIPMessage.headers
This attribute is a dictionary of all the headers in the request, and their parsed values.

SIPMessage.body
This attribute is a dictionary of all the SDP tags in the request, and their parsed values.

SIPMessage.authentication
This attribute is a dictionary of a parsed Authentication header. There are two authentication
headers: Authorization, and WWW-Authenticate. See RFC 3261 Sections 20.7 and 20.44 re-
spectively.

SIPMessage.raw
This attribute is an unparsed version of the data argument, in bytes.

summary() -> str
This method returns a string representation of the SIP request.

parse(data: bytes) -> None
This method is called by the initialization of the class. It decides the SIPMessageType, and sends it to the
corresponding parse function. Data is the original data argument in the initialization of the class. This
should not be called by the user.

parseSIPResponse(data: bytes) -> None
Deprecated. This should not be called by the user.

parse_sip_response(data: bytes) -> None
This method is called by parse(). It sets the header, version, and status attributes and may raise a SIP-
ParseError if the SIP response is an unsupported SIP version. It then calls parseHeader() for each header

4.3. Classes 17

https://tools.ietf.org/html/rfc3261#section-20.7
https://tools.ietf.org/html/rfc3261#section-20.44

pyVoIP, Release 1.6.8

in the request. Data is the original data argument in the initialization of the class. This should not be
called by the user.

parseSIPMessage(data: bytes) -> None
Deprecated. This should not be called by the user.

parse_sip_message(data: bytes) -> None
This method is called by parse(). It sets the header, version, and method attributes and may raise a SIP-
ParseError if the SIP request is an unsupported SIP version. It then calls parseHeader() and parseBody()
for each header or tag in the request respectively. Data is the original data argument in the initialization of
the class. This should not be called by the user.

parseHeader(header: str, data: str) -> None
Deprecated. This should not be called by the user.

parse_header(header: str, data: str) -> None
This method is called by parseSIPResponse() and parseSIPMessage(). The header argument is the name of
the header, i.e. ‘Call-ID’ or ‘CSeq’, represented as a string. The data argument is the value of the header,
i.e. ‘Ogq-T7iBmNozoUu3GL9Lvg..’ or ‘1 INVITE’, represented as a string. This should not be called
by the user.

parseBody(header: str, data: str) -> None
Deprecated. This should not be called by the user.

parse_body(header: str, data: str) -> None
This method is called by parseSIPResponse() and parseSIPMessage(). The header argument is the name
of the SDP tag, i.e. ‘m’ or ‘a’, represented as a string. The data argument is the value of the header, i.e.
‘audio 56704 RTP/AVP 0’ or ‘sendrecv’, represented as a string. This should not be called by the user.

18 Chapter 4. SIP - Session Initiation Protocol

CHAPTER

FIVE

RTP - REAL-TIME TRANSPORT PROTOCOL

The RTP module recives and transmits sound and phone-event data for a particular phone call.

The RTP module has two methods that are used by various classes for packet parsing.

RTP.byte_to_bits(byte: bytes) -> str
This method converts a single byte into an eight character string of ones and zeros. The byte argument must be
a single byte.

RTP.add_bytes(bytes: bytes) -> int
This method takes multiple bytes and adds them together into an integer.

5.1 Errors

exception RTP.DynamicPayloadType
This may be thrown when you try to int cast a dynamic PayloadType. Most PayloadTypes have a number assigned
in RFC 3551 Section 6. However, some are considered to be ‘dynamic’ meaning the PBX/VoIP server will pick
an available number, and define it.

exception RTP.RTPParseError
This is thrown by RTPMessage when unable to parse a RTP message. It may also be thrown by RTPClient when
it’s unable to encode or decode the RTP packet payload.

5.2 Enums

RTP.RTPProtocol
RTPProtocol is an Enum with three attributes. It defines the method that packets are to be sent with. Currently,
only AVP is supported.

RTPProtocol.UDP
This means the audio should be sent with pure UDP. Returns 'udp' when string casted.

RTPProtocol.AVP
This means the audio should be sent with RTP Audio/Video Protocol described in RFC 3551. Returns
'RTP/AVP' when string casted.

RTPProtocol.SAVP
This means the audio should be sent with RTP Secure Audio/Video Protocol described in RFC 3711.
Returns 'RTP/SAVP' when string casted.

RTP.TransmitType
TransmitType is an Enum with four attributes. It describes how the RTPClient should act.

19

https://tools.ietf.org/html/rfc3551#section-6
https://datatracker.ietf.org/doc/html/rfc3551.html
https://datatracker.ietf.org/doc/html/rfc3711.html

pyVoIP, Release 1.6.8

TransmitType.RECVONLY
This means the RTPClient should only recive audio, not transmit it. Returns 'recvonly' when string
casted.

TransmitType.SENDRECV
This means the RTPClient should send and receive audio. Returns 'sendrecv' when string casted.

TransmitType.SENDONLY
This means the RTPClient should only send audio, not receive it. Returns 'sendonly'when string casted.

TransmitType.INACTIVE
This means the RTP client should not send or receive audio, and instead wait to be activated. Returns
'inactive' when string casted.

RTP.PayloadType
PayloadType is an Enum with multiple attributes. It described the list of attributes in RFC 3551 Section 6. Cur-
rently, only one dynamic event is assigned: telephone-event. Telephone-event is used for sending and recieving
DTMF codes. There are a few conflicing names in the RFC as they’re the same codec with varrying options so
we will go over the conflicts here. PayloadType has the following attributes:

type.value
This is either the number assigned as PT in the RFC 3551 Section 6 chart, or it is the encoding
name if it is dynamic. Int casting the PayloadType will return this number, or raise a Dynamic-
PayloadType error if the protocol is dynamic.

type.rate
This will return the clock rate of the codec.

type.channel
This will return the number of channels the used in the codec, or for Non-codecs like telephone-
event, it will return zero.

type.description
This will return the encoding name of the payload. String casting the PayloadType will return
this value.

PayloadType.DVI4_8000
This variation of the DVI4 Codec has the attributes: value 5, rate 8000, channel 1, description “DVI4”

PayloadType.DVI4_16000
This variation of the DVI4 Codec has the attributes: value 6, rate 16000, channel 1, description “DVI4”

PayloadType.DVI4_11025
This variation of the DVI4 Codec has the attributes: value 16, rate 11025, channel 1, description “DVI4”

PayloadType.DVI4_22050
This variation of the DVI4 Codec has the attributes: value 17, rate 22050, channel 1, description “DVI4”

PayloadType.L16
This variation of the L16 Codec has the attributes: value 11, rate 44100, channel 1, description “L16”

PayloadType.L16_2
This variation of the L16 Codec has the attributes: value 11, rate 44100, channel 2, description “L16”

PayloadType.EVENT
This is the dynamic non-codec ‘telephone-event’. Telephone-event is used for sending and receiving DTMF
codes.

20 Chapter 5. RTP - Real-time Transport Protocol

https://tools.ietf.org/html/rfc3551#section-6

pyVoIP, Release 1.6.8

5.3 Classes

5.3.1 RTPPacketManager

The RTPPacketManager class utilizes an io.ByteIO that stores either received payloads, or raw audio data waiting to
be transmitted.

RTP.RTPPacketManager()

read(length=160) -> bytes
Reads length bytes from the ByteIO. This will always return the length requested, and will append
b'\x80'’s onto the end of the available bytes to achieve this length.

rebuild(reset: bool, offset=0, data=b”) -> None
This rebuilds the ByteIO if packets are sent out of order. Setting the argument reset to True will
wipe all data in the ByteIO and insert in the data in the argument data at the position in the argument
offset.

write(offset: int, data: bytes) -> None
Writes the data in the argument data to the ByteIO at the position in the argument offset. RTP data
comes with a timestamp that is passed as the offset in this case. This makes it so a hole left by delayed
packets can be filled later. If a packet with a timestamp sooner than any other timestamp received,
it will rebuild the ByteIO with the new data. If this new position is over 100,000 bytes before the
earliest byte, the ByteIO is completely wiped and starts over. This is to prevent Overflow errors.

5.3.2 RTPMessage

The RTPMessage class is used to parse RTP packets and makes them easily processed by the RTPClient.

RTP.RTPMessage(data: bytes, assoc: dict[int, PayloadType])

The data argument is the received RTP packet in bytes.

The assoc argument is a dictionary, using the payload number as a key and a PayloadType as
the value. This way RTPMessage can determine what number a dynamic payload is. This
association dictionary is generated by VoIPCall.

RTPMessage has attributes that come from RFC 3550 Section 5.1. RTPMessage has the following at-
tributes:

RTPMessage.version
This attribute is the RTP packet version, represented as an integer.

RTPMessage.padding
If this attribute is set to True the payload has padding.

RTPMessage.extension
If this attribute is set to True the packet has a header extension.

RTPMessage.CC
This attribute is the CSRC Count, represented as an integer.

RTPMessage.marker
This attribute is set to True if the marker bit is set.

RTPMessage.payload_type
This attribute is set to the PayloadType that corresponds to the payload codec.

RTPMessage.sequence
This attribute is set to the sequence number of the RTP packet, represented as an integer.

5.3. Classes 21

https://tools.ietf.org/html/rfc3550#section-5.1

pyVoIP, Release 1.6.8

RTPMessage.timestamp
This attribute is set to the timestamp of the RTP packet, represented as an integer.

RTPMessage.SSRC
This attribute is set to the synchronization source of the RTP packet, represented as an
integer.

RTPMessage.payload
This attribute is the payload data of the RTP packet, represented as bytes.

RTPMessage.raw
This attribute is the unparsed version of the data argument, in bytes.

summary() -> str
This method returns a string representation of the RTP packet excluding the payload.

parse(data: bytes) -> None
This method is called by the initialization of the class. It determines the RTP version, whether the
packet has padding, has a header extension, and other information about the backet.

5.3.3 RTPClient

The RTPClient is used to send and receive RTP packets and encode/decode the audio codecs.

class RTP.RTPClient(assoc: dict[int, PayloadType], inIP: str, inPort: int, outIP: str, outPort: int, sendrecv: Transmit-
Type, dtmf: Optional[Callable[[str], None] = None):

The assoc argument is a dictionary, using the payload number as a key and a PayloadType as
the value. This way, RTPMessage can determine what a number a dynamic payload is. This
association dictionary is generated by VoIPCall.

The inIP argument is used to receive incoming RTP message.

The inPort argument is the port RTPClient will bind to, to receive incoming RTP packets.

The outIP argument is used to transmit RTP packets.

The outPort argument is used to transmit RTP packets.

The sendrecv argument describes how the RTPClient should act. Please reference TransmitType
for more details.

The dtmf argument is set to the callback VoIPCall.dtmfCallback().

start() -> None
This method is called by VoIPCall.answer(). It starts the recv() and trans() threads. It is also what
initiates the bound port. This should not be called by the user.

stop() -> None
This method is called by VoIPCall.hangup() and VoIPCall.bye(). It stops the recv() and trans()
threads. It will also close the bound port. This should not be called by the user.

read(length=160, blocking=True) -> bytes
This method is called by VoIPCall.readAudio(). It reads linear/raw audio data from the received
buffer. Returns length amount of bytes. Default length is 160 as that is the amount of bytes sent per
PCMU/PCMA packet. When blocking is set to true, this function will not return until data is available.
When blocking is set to false and data is not available, this function will return bytes(length).

write(data: bytes) -> None
This method is called by VoIPCall.writeAudio(). It queues the data written to be sent to the client.

22 Chapter 5. RTP - Real-time Transport Protocol

pyVoIP, Release 1.6.8

recv() -> None
This method is called by RTPClient.start() and is responsible for receiving and parsing through RTP
packets. This should not be called by the user.

trans() -> None
This method is called by RTPClient.start() and is responsible for transmitting RTP packets. This
should not be called by the user.

parsePacket(packet: bytes) -> None
Deprecated. Please use parse_packet instead.

parse_packet(packet: bytes) -> None
This method is called by the recv() thread. It converts the argument packet into a RTPMessage, then
sends it to the proper parse function depending on the PayloadType.

encodePacket(payload: bytes) -> bytes
Deprecated. Please use encode_packet instead.

encode_packet(payload: bytes) -> bytes
This method is called by the trans() thread. It encoded the argument payload into the prefered codec.
Currently, PCMU is the hardcoded prefered codec. The trans() thread will use the payload to create
the RTP packet before transmitting.

parsePCMU(packet: RTPMessage) -> None
Deprecated. Please use parse_pcmu instead.

parse_pcmu(packet: RTPMessage) -> None
This method is called by parse_packet(). It will decode the packet’s payload from PCMU to linear/raw
audio and write it to the incoming RTPPacketManager.

encodePCMU(payload: bytes) -> bytes
This method is called by encode_packet(). It will encode the payload into the PCMU audio codec.

parsePCMA(packet: RTPMessage) -> None
This method is called by parse_packet(). It will decode the packet’s payload from PCMA to linear/raw
audio and write it to the incoming RTPPacketManager.

encodePCMA(payload: bytes) -> bytes
Deprecated. Please use encode_pcma instead.

encode_pcma(payload: bytes) -> bytes
This method is called by encode_packet(). It will encode the payload into the PCMA audio codec.

parseTelephoneEvent(packet: RTPMessage) -> None
Deprecated Please use parse_telephone_event instead.

parse_telephone_event(packet: RTPMessage) -> None
This method is called by parse_packet(). It will decode the packet’s payload from the telephone-event
non-codec to the string representation of the event. It will then call VoIPCall.dtmf_callback().

5.3. Classes 23

pyVoIP, Release 1.6.8

24 Chapter 5. RTP - Real-time Transport Protocol

INDEX

C
client, 1

R
RFC

RFC 3551, 19
RFC 3711, 19

U
user, 1

25

	Examples
	Setup
	Announcement Board
	IVR/Phone Menus

	Global Variables
	VoIP - The Bridge Between SIP and RTP
	Errors
	Enums
	Classes
	VoIPCall
	VoIPPhone

	SIP - Session Initiation Protocol
	Errors
	Enums
	Classes
	SIPClient
	SIPMessage

	RTP - Real-time Transport Protocol
	Errors
	Enums
	Classes
	RTPPacketManager
	RTPMessage
	RTPClient

	Index

